Copied to
clipboard

G = C2×C52⋊C3order 150 = 2·3·52

Direct product of C2 and C52⋊C3

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C52⋊C3, C522C6, (C5×C10)⋊C3, SmallGroup(150,7)

Series: Derived Chief Lower central Upper central

C1C52 — C2×C52⋊C3
C1C52C52⋊C3 — C2×C52⋊C3
C52 — C2×C52⋊C3
C1C2

Generators and relations for C2×C52⋊C3
 G = < a,b,c,d | a2=b5=c5=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3c3, dcd-1=b-1c >

25C3
3C5
3C5
25C6
3C10
3C10

Character table of C2×C52⋊C3

 class 123A3B5A5B5C5D5E5F5G5H6A6B10A10B10C10D10E10F10G10H
 size 11252533333333252533333333
ρ11111111111111111111111    trivial
ρ21-11111111111-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ311ζ3ζ3211111111ζ3ζ3211111111    linear of order 3
ρ41-1ζ32ζ311111111ζ6ζ65-1-1-1-1-1-1-1-1    linear of order 6
ρ51-1ζ3ζ3211111111ζ65ζ6-1-1-1-1-1-1-1-1    linear of order 6
ρ611ζ32ζ311111111ζ32ζ311111111    linear of order 3
ρ73-300ζ54+2ζ531+5/21-5/21+5/21-5/2525ζ53+2ζ5545200-2ζ52553-2ζ5-1-5/2-1+5/2-1-5/2-1+5/2-2ζ545254-2ζ53    complex faithful
ρ83300ζ54+2ζ531+5/21-5/21+5/21-5/2525ζ53+2ζ5545200525ζ53+2ζ51+5/21-5/21+5/21-5/25452ζ54+2ζ53    complex lifted from C52⋊C3
ρ93-3005251+5/21-5/21+5/21-5/2ζ54+2ζ535452ζ53+2ζ50054-2ζ53-2ζ5452-1-5/2-1+5/2-1-5/2-1+5/253-2ζ5-2ζ525    complex faithful
ρ10330054521-5/21+5/21-5/21+5/2ζ53+2ζ5ζ54+2ζ5352500ζ53+2ζ5ζ54+2ζ531-5/21+5/21-5/21+5/25255452    complex lifted from C52⋊C3
ρ113-3001+5/25452ζ54+2ζ53ζ53+2ζ55251+5/21-5/21-5/200-1-5/2-1+5/2-2ζ545254-2ζ5353-2ζ5-2ζ525-1+5/2-1-5/2    complex faithful
ρ1233001-5/25255452ζ54+2ζ53ζ53+2ζ51-5/21+5/21+5/2001-5/21+5/25255452ζ54+2ζ53ζ53+2ζ51+5/21-5/2    complex lifted from C52⋊C3
ρ133300ζ53+2ζ51-5/21+5/21-5/21+5/25452525ζ54+2ζ530054525251-5/21+5/21-5/21+5/2ζ54+2ζ53ζ53+2ζ5    complex lifted from C52⋊C3
ρ143-30054521-5/21+5/21-5/21+5/2ζ53+2ζ5ζ54+2ζ535250053-2ζ554-2ζ53-1+5/2-1-5/2-1+5/2-1-5/2-2ζ525-2ζ5452    complex faithful
ρ1533001+5/25452ζ54+2ζ53ζ53+2ζ55251+5/21-5/21-5/2001+5/21-5/25452ζ54+2ζ53ζ53+2ζ55251-5/21+5/2    complex lifted from C52⋊C3
ρ1633001-5/2ζ54+2ζ53ζ53+2ζ552554521-5/21+5/21+5/2001-5/21+5/2ζ54+2ζ53ζ53+2ζ552554521+5/21-5/2    complex lifted from C52⋊C3
ρ173-3001-5/25255452ζ54+2ζ53ζ53+2ζ51-5/21+5/21+5/200-1+5/2-1-5/2-2ζ525-2ζ545254-2ζ5353-2ζ5-1-5/2-1+5/2    complex faithful
ρ183-3001+5/2ζ53+2ζ55255452ζ54+2ζ531+5/21-5/21-5/200-1-5/2-1+5/253-2ζ5-2ζ525-2ζ545254-2ζ53-1+5/2-1-5/2    complex faithful
ρ193-3001-5/2ζ54+2ζ53ζ53+2ζ552554521-5/21+5/21+5/200-1+5/2-1-5/254-2ζ5353-2ζ5-2ζ525-2ζ5452-1-5/2-1+5/2    complex faithful
ρ2033005251+5/21-5/21+5/21-5/2ζ54+2ζ535452ζ53+2ζ500ζ54+2ζ5354521+5/21-5/21+5/21-5/2ζ53+2ζ5525    complex lifted from C52⋊C3
ρ2133001+5/2ζ53+2ζ55255452ζ54+2ζ531+5/21-5/21-5/2001+5/21-5/2ζ53+2ζ55255452ζ54+2ζ531-5/21+5/2    complex lifted from C52⋊C3
ρ223-300ζ53+2ζ51-5/21+5/21-5/21+5/25452525ζ54+2ζ5300-2ζ5452-2ζ525-1+5/2-1-5/2-1+5/2-1-5/254-2ζ5353-2ζ5    complex faithful

Permutation representations of C2×C52⋊C3
On 30 points - transitive group 30T40
Generators in S30
(1 9)(2 8)(3 7)(4 6)(5 10)(11 30)(12 26)(13 27)(14 28)(15 29)(16 25)(17 21)(18 22)(19 23)(20 24)
(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 4 2 5 3)(6 8 10 7 9)(11 15 14 13 12)(16 18 20 17 19)(21 23 25 22 24)(26 30 29 28 27)
(1 20 26)(2 19 27)(3 18 28)(4 17 29)(5 16 30)(6 21 15)(7 22 14)(8 23 13)(9 24 12)(10 25 11)

G:=sub<Sym(30)| (1,9)(2,8)(3,7)(4,6)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,25)(17,21)(18,22)(19,23)(20,24), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,4,2,5,3)(6,8,10,7,9)(11,15,14,13,12)(16,18,20,17,19)(21,23,25,22,24)(26,30,29,28,27), (1,20,26)(2,19,27)(3,18,28)(4,17,29)(5,16,30)(6,21,15)(7,22,14)(8,23,13)(9,24,12)(10,25,11)>;

G:=Group( (1,9)(2,8)(3,7)(4,6)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,25)(17,21)(18,22)(19,23)(20,24), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,4,2,5,3)(6,8,10,7,9)(11,15,14,13,12)(16,18,20,17,19)(21,23,25,22,24)(26,30,29,28,27), (1,20,26)(2,19,27)(3,18,28)(4,17,29)(5,16,30)(6,21,15)(7,22,14)(8,23,13)(9,24,12)(10,25,11) );

G=PermutationGroup([[(1,9),(2,8),(3,7),(4,6),(5,10),(11,30),(12,26),(13,27),(14,28),(15,29),(16,25),(17,21),(18,22),(19,23),(20,24)], [(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,4,2,5,3),(6,8,10,7,9),(11,15,14,13,12),(16,18,20,17,19),(21,23,25,22,24),(26,30,29,28,27)], [(1,20,26),(2,19,27),(3,18,28),(4,17,29),(5,16,30),(6,21,15),(7,22,14),(8,23,13),(9,24,12),(10,25,11)]])

G:=TransitiveGroup(30,40);

C2×C52⋊C3 is a maximal subgroup of   C522Dic3  C522C12

Matrix representation of C2×C52⋊C3 in GL3(𝔽11) generated by

1000
0100
0010
,
252
306
612
,
654
1079
004
,
101
0010
0110
G:=sub<GL(3,GF(11))| [10,0,0,0,10,0,0,0,10],[2,3,6,5,0,1,2,6,2],[6,10,0,5,7,0,4,9,4],[1,0,0,0,0,1,1,10,10] >;

C2×C52⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_5^2\rtimes C_3
% in TeX

G:=Group("C2xC5^2:C3");
// GroupNames label

G:=SmallGroup(150,7);
// by ID

G=gap.SmallGroup(150,7);
# by ID

G:=PCGroup([4,-2,-3,-5,5,582,919]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^5=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3*c^3,d*c*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C2×C52⋊C3 in TeX
Character table of C2×C52⋊C3 in TeX

׿
×
𝔽