direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C52⋊C3, C52⋊2C6, (C5×C10)⋊C3, SmallGroup(150,7)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C52⋊C3 — C2×C52⋊C3 |
C52 — C2×C52⋊C3 |
Generators and relations for C2×C52⋊C3
G = < a,b,c,d | a2=b5=c5=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3c3, dcd-1=b-1c >
Character table of C2×C52⋊C3
class | 1 | 2 | 3A | 3B | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 6A | 6B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | |
size | 1 | 1 | 25 | 25 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 25 | 25 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ5 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 3 | -3 | 0 | 0 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 2ζ52+ζ5 | ζ53+2ζ5 | 2ζ54+ζ52 | 0 | 0 | -2ζ52-ζ5 | -ζ53-2ζ5 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -2ζ54-ζ52 | -ζ54-2ζ53 | complex faithful |
ρ8 | 3 | 3 | 0 | 0 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 2ζ52+ζ5 | ζ53+2ζ5 | 2ζ54+ζ52 | 0 | 0 | 2ζ52+ζ5 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 2ζ54+ζ52 | ζ54+2ζ53 | complex lifted from C52⋊C3 |
ρ9 | 3 | -3 | 0 | 0 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | ζ54+2ζ53 | 2ζ54+ζ52 | ζ53+2ζ5 | 0 | 0 | -ζ54-2ζ53 | -2ζ54-ζ52 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -ζ53-2ζ5 | -2ζ52-ζ5 | complex faithful |
ρ10 | 3 | 3 | 0 | 0 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | ζ53+2ζ5 | ζ54+2ζ53 | 2ζ52+ζ5 | 0 | 0 | ζ53+2ζ5 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 2ζ52+ζ5 | 2ζ54+ζ52 | complex lifted from C52⋊C3 |
ρ11 | 3 | -3 | 0 | 0 | 1+√5/2 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2ζ54-ζ52 | -ζ54-2ζ53 | -ζ53-2ζ5 | -2ζ52-ζ5 | -1+√5/2 | -1-√5/2 | complex faithful |
ρ12 | 3 | 3 | 0 | 0 | 1-√5/2 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 1+√5/2 | 1-√5/2 | complex lifted from C52⋊C3 |
ρ13 | 3 | 3 | 0 | 0 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 2ζ54+ζ52 | 2ζ52+ζ5 | ζ54+2ζ53 | 0 | 0 | 2ζ54+ζ52 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | ζ54+2ζ53 | ζ53+2ζ5 | complex lifted from C52⋊C3 |
ρ14 | 3 | -3 | 0 | 0 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | ζ53+2ζ5 | ζ54+2ζ53 | 2ζ52+ζ5 | 0 | 0 | -ζ53-2ζ5 | -ζ54-2ζ53 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -2ζ52-ζ5 | -2ζ54-ζ52 | complex faithful |
ρ15 | 3 | 3 | 0 | 0 | 1+√5/2 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 1-√5/2 | 1+√5/2 | complex lifted from C52⋊C3 |
ρ16 | 3 | 3 | 0 | 0 | 1-√5/2 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | complex lifted from C52⋊C3 |
ρ17 | 3 | -3 | 0 | 0 | 1-√5/2 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2ζ52-ζ5 | -2ζ54-ζ52 | -ζ54-2ζ53 | -ζ53-2ζ5 | -1-√5/2 | -1+√5/2 | complex faithful |
ρ18 | 3 | -3 | 0 | 0 | 1+√5/2 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ53-2ζ5 | -2ζ52-ζ5 | -2ζ54-ζ52 | -ζ54-2ζ53 | -1+√5/2 | -1-√5/2 | complex faithful |
ρ19 | 3 | -3 | 0 | 0 | 1-√5/2 | ζ54+2ζ53 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -ζ54-2ζ53 | -ζ53-2ζ5 | -2ζ52-ζ5 | -2ζ54-ζ52 | -1-√5/2 | -1+√5/2 | complex faithful |
ρ20 | 3 | 3 | 0 | 0 | 2ζ52+ζ5 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | ζ54+2ζ53 | 2ζ54+ζ52 | ζ53+2ζ5 | 0 | 0 | ζ54+2ζ53 | 2ζ54+ζ52 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | ζ53+2ζ5 | 2ζ52+ζ5 | complex lifted from C52⋊C3 |
ρ21 | 3 | 3 | 0 | 0 | 1+√5/2 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | ζ53+2ζ5 | 2ζ52+ζ5 | 2ζ54+ζ52 | ζ54+2ζ53 | 1-√5/2 | 1+√5/2 | complex lifted from C52⋊C3 |
ρ22 | 3 | -3 | 0 | 0 | ζ53+2ζ5 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 2ζ54+ζ52 | 2ζ52+ζ5 | ζ54+2ζ53 | 0 | 0 | -2ζ54-ζ52 | -2ζ52-ζ5 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -ζ54-2ζ53 | -ζ53-2ζ5 | complex faithful |
(1 9)(2 8)(3 7)(4 6)(5 10)(11 30)(12 26)(13 27)(14 28)(15 29)(16 25)(17 21)(18 22)(19 23)(20 24)
(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 4 2 5 3)(6 8 10 7 9)(11 15 14 13 12)(16 18 20 17 19)(21 23 25 22 24)(26 30 29 28 27)
(1 20 26)(2 19 27)(3 18 28)(4 17 29)(5 16 30)(6 21 15)(7 22 14)(8 23 13)(9 24 12)(10 25 11)
G:=sub<Sym(30)| (1,9)(2,8)(3,7)(4,6)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,25)(17,21)(18,22)(19,23)(20,24), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,4,2,5,3)(6,8,10,7,9)(11,15,14,13,12)(16,18,20,17,19)(21,23,25,22,24)(26,30,29,28,27), (1,20,26)(2,19,27)(3,18,28)(4,17,29)(5,16,30)(6,21,15)(7,22,14)(8,23,13)(9,24,12)(10,25,11)>;
G:=Group( (1,9)(2,8)(3,7)(4,6)(5,10)(11,30)(12,26)(13,27)(14,28)(15,29)(16,25)(17,21)(18,22)(19,23)(20,24), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,4,2,5,3)(6,8,10,7,9)(11,15,14,13,12)(16,18,20,17,19)(21,23,25,22,24)(26,30,29,28,27), (1,20,26)(2,19,27)(3,18,28)(4,17,29)(5,16,30)(6,21,15)(7,22,14)(8,23,13)(9,24,12)(10,25,11) );
G=PermutationGroup([[(1,9),(2,8),(3,7),(4,6),(5,10),(11,30),(12,26),(13,27),(14,28),(15,29),(16,25),(17,21),(18,22),(19,23),(20,24)], [(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,4,2,5,3),(6,8,10,7,9),(11,15,14,13,12),(16,18,20,17,19),(21,23,25,22,24),(26,30,29,28,27)], [(1,20,26),(2,19,27),(3,18,28),(4,17,29),(5,16,30),(6,21,15),(7,22,14),(8,23,13),(9,24,12),(10,25,11)]])
G:=TransitiveGroup(30,40);
C2×C52⋊C3 is a maximal subgroup of
C52⋊2Dic3 C52⋊2C12
Matrix representation of C2×C52⋊C3 ►in GL3(𝔽11) generated by
10 | 0 | 0 |
0 | 10 | 0 |
0 | 0 | 10 |
2 | 5 | 2 |
3 | 0 | 6 |
6 | 1 | 2 |
6 | 5 | 4 |
10 | 7 | 9 |
0 | 0 | 4 |
1 | 0 | 1 |
0 | 0 | 10 |
0 | 1 | 10 |
G:=sub<GL(3,GF(11))| [10,0,0,0,10,0,0,0,10],[2,3,6,5,0,1,2,6,2],[6,10,0,5,7,0,4,9,4],[1,0,0,0,0,1,1,10,10] >;
C2×C52⋊C3 in GAP, Magma, Sage, TeX
C_2\times C_5^2\rtimes C_3
% in TeX
G:=Group("C2xC5^2:C3");
// GroupNames label
G:=SmallGroup(150,7);
// by ID
G=gap.SmallGroup(150,7);
# by ID
G:=PCGroup([4,-2,-3,-5,5,582,919]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^5=c^5=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3*c^3,d*c*d^-1=b^-1*c>;
// generators/relations
Export
Subgroup lattice of C2×C52⋊C3 in TeX
Character table of C2×C52⋊C3 in TeX